- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Yu, Haichao (2)
-
Cao, Nan (1)
-
Freitas, Scott (1)
-
Hu, Yu Hen (1)
-
Kang, Jian (1)
-
Morgado, Pedro (1)
-
Tian, Yu (1)
-
Tong, Hanghang (1)
-
Wang, Heng (1)
-
Wu, Cheng-En (1)
-
Xia, Yinglong (1)
-
Yang, Linjie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kang, Jian; Freitas, Scott; Yu, Haichao; Xia, Yinglong; Cao, Nan; Tong, Hanghang (, CIKM '18 Proceedings of the 27th ACM International Conference on Information and Knowledge Management)In this paper we present a web-based prototype for an explainable ranking algorithm in multi-layered networks, incorporating both network topology and knowledge information. While traditional ranking algorithms such as PageRank and HITS are important tools for exploring the underlying structure of networks, they have two fundamental limitations in their efforts to generate high accuracy rankings. First, they are primarily focused on network topology, leaving out additional sources of information (e.g. attributes, knowledge). Secondly, most algorithms do not provide explanations to the end-users on why the algorithm gives the specific ranking results, hindering the usability of the ranking information. We developed Xrank, an explainable ranking tool, to address these drawbacks. Empirical results indicate that our explainable ranking method not only improves ranking accuracy, but facilitates user understanding of the ranking by exploring the top influential elements in multi-layered networks. The web-based prototype (Xrank: http://www.x-rank.net) is currently online - we believe it will assist both researchers and practitioners looking to explore and exploit multi-layered network data.more » « less
An official website of the United States government
