skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Haichao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we present a web-based prototype for an explainable ranking algorithm in multi-layered networks, incorporating both network topology and knowledge information. While traditional ranking algorithms such as PageRank and HITS are important tools for exploring the underlying structure of networks, they have two fundamental limitations in their efforts to generate high accuracy rankings. First, they are primarily focused on network topology, leaving out additional sources of information (e.g. attributes, knowledge). Secondly, most algorithms do not provide explanations to the end-users on why the algorithm gives the specific ranking results, hindering the usability of the ranking information. We developed Xrank, an explainable ranking tool, to address these drawbacks. Empirical results indicate that our explainable ranking method not only improves ranking accuracy, but facilitates user understanding of the ranking by exploring the top influential elements in multi-layered networks. The web-based prototype (Xrank: http://www.x-rank.net) is currently online - we believe it will assist both researchers and practitioners looking to explore and exploit multi-layered network data. 
    more » « less